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ABSTRACT

Quenched geometric disorder of a wall delimiting a spectator phase can have dramatic

effects on the nature of critical wetting transitions. We consider self–affine walls in 2D

with roughness exponent ζW . Transfer matrix results for directed interfacial models with

short–range interactions suggest that wetting turns first–order as soon as ζW exceeds ζ0,

the anisotropy index of interface fluctuations in the bulk. Discontinuous interface depinning

is best signalled by a peculiar two-peak structure in the statistical distributions of wall–

interface contacts obtained by sampling over disorder. On the other hand, for ζW < ζ0

wetting remains continuous, most plausibly in the same universality class as with flat walls.

This occurs both with ordered (ζ0 = 1/2), and with bond–disordered (ζ0 = 2/3) bulk. A

precise location of the thresholds at ζW = ζ0 can be argued on the basis of an analysis of

different terms in the interfacial free energy. This analysis elucidates the peculiar role played

by the intrinsic interfacial roughness and suggests extensions of the results to 3D and to

long–range substrate forces.

KEY WORDS: bulk disorder; geometrical surface disorder; statistical physics; wetting tran-

sitions.
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1. INTRODUCTION

Wetting phenomena occurring when an interface between two coexisting phases unbinds

from an attractive substrate (spectator phase) have been intensively studied in the last two

decades and are rather well understood by now [1]. The wetting transition takes place with

both long–range, and short–range substrate forces, and can be either continuous, or first–

order. In recent years also systems in which coexistence takes place in a quenched random

bulk have been extensively studied [2–5]. In the case of short–range substrate forces, with

which we mostly deal in this paper, first–order wetting never occurs in 2D. Indeed, bulk

disorder, for example, can only modify the universality class of critical wetting transitions,

but not, in general, their continuous, second–order character.

A relatively much less studied disorder is that associated with the wall delimiting the

substrate [2]. One can distinguish between two types of wall disorder: chemical surface

disorder, pertaining to some inhomogeneity in the strength of interactions exerted by a

smooth substrate, and geometrical surface disorder, determined by wall roughness alone.

In this report we concentrate exclusively on geometrical surface disorder and discuss its

effects on critical wetting transitions, when it occurs both alone, and in the presence of bulk

disorder.

From a theoretical point of view, cases of wall roughness characterized by some scaling are

of special interest. An example is self–affine roughness, in which transverse displacements

of the wall profile have an average width, wX ∝ XζW (0 < ζW < 1), where X is the

longitudinal sample length. Indeed, also the roughness displayed by interfaces in the bulk is

known to be self–affine below criticality, no matter whether their fluctuations are controlled

by temperature or by disorder [2]. So, a direct competition between the roughness of the

wall and that of the interface can be anticipated when wetting occurs. With ordered bulk

in d dimensions the roughness, or anisotropy exponent of the interface is ζ0(d) = (3− d)/2,

for 1 ≤ d ≤ 3, and ζ0 = 0 for d > 3 [6]. For random bonds ζ0(2) = 2/3 holds exatly [7],

while, e.g., ζ0(3) ∼ 0.41 [6].

3



Substrates with self–affine roughness can also be studied experimentally, and adsorp-

tion phenomena have been already observed on them [8]. Indeed, the first studies of the

consequences of this roughness, especially for complete wetting, were also motivated by the

controversial interpretation of such experiments [9]. However, it was not until very recently

that the peculiar effects of roughness on critical wetting discussed below were predicted and

started to be elucidated [10].

In this report we review recent progress and present new results on the effects of self–

affine roughness on the nature of wetting transitions in a variety of situations. The main

body of our results is for short–range forces and is obtained by transfer matrix methods on

2D lattices. However, on the basis of our numerical analysis in 2D, we are able to draw a

more general scenario, which, although on more conjectural basis, includes cases in 3D and

even with long–range interactions.

This article is organized as follows. In the next section we introduce our interfacial

model in 2D and briefly present the main transfer matrix results in the case of ordered

and disordered bulks. The third section is devoted to conclusions and to a more general

discussion of the mechanism by which roughness can turn critical wetting into first–order.

Here some natural extensions of our results to cases not accessible by a numerical analysis

are also proposed.

2. MODELS AND RESULTS IN 2D

We want to describe the interface between plus and minus phases of a 2D Ising ferro-

magnet (T < Tc), either pure, or with random nearest neighbor couplings. The phases are

enforced by fixed spin boundary conditions on opposite sides of the sample. One of the

(flat) boundaries attracts the interface because, e.g., the nearest neighbor couplings with

the spins fixed at the border are weakened by a fixed energy δ with respect to the bulk ones.

This amounts to a short–range attraction effect. It is well known that to the purpose of

describing wetting phenomena one can disregard the possibility of bubbles in the two phases

and of overhangs of the interface [1,2]. This leads to describe the interface as a directed
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path on the dual lattice [11]. Each step has an associated energy 2Jb = 2εb, where Jb is the

exchange energy of the broken bond in the spin problem. If taken at the border (wall), the

step has a lower energy 2(Jb − δ). The interfacial free energy of the interface is then

FX = lnZX = ln

[∑
P

exp(−EP /T )

]
(1)

where the sum is over all allowed directed paths, P , from the origin to points of abscissa X,

and

EP =
∑
b∈P

εb −
∑

b∈W∩P

εW . (2)

Here εW = 2δ and W indicates the path running on the wall. Of course, no P can trespass

W . We study the effects of rough W . Let us indicate by x the longitudinal coordinate and

by y the transverse one. A random self–affine wall will have y = yW (x) satisfying

[
(yW (x1)− yW (x2))2

]1/2
∼ |yW (x1)− yW (x2)|

ζW (3)

for large |x2 − x1|. Here the overbar indicates quenched average over a given distribution

of possible wall profiles. By proper algorithms we are able to generate samples of profiles

satisfying eq.(3) with preassigned ζW [10]. Fig. 1 illustrates the situation with a rough

wall, in a case when wall and paths are directed along (1, 1). Other schemes used in our

calculations were with W and interfaces along (1, 0) [10].

For a given configuration of the wall, and of the energies εb, in case of random bulk, the

partition function ZX can be obtained by transfer matrix methods. If we indicate by Zx(y)

the restricted partition of paths ending at (x, y) ( x ≥ y ≥ yW (x), of course), in a case like

in Fig. 1 we can write

Zx+1(y) = Zx(y + 1) exp(−Eb1/T ) + Zx(y − 1) exp(−Eb2/T ) (4)

where Eb = εb − εW or Eb = εb, according to whether the bond b does, or does not belong

to W . In eq.(4), b1 and b2 refer to the upper left and lower left neighbors of (x + 1, y),

respectively; the terms corresponding to either b1, or b2 will not appear in case y is at one of
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its bounds. When discussing situations with random bonds in the bulk, our choice for the

probability distribution of εb was simply a uniform one in the interval 0 < εb < 1.

We made extensive calculations of quantities like n(X) = (1/X) [∂ln(ZX)/∂ln(εW/T )],

for X up to 150000. The quenched averages n(X) over wall, and, where applicable,

bulk disorder, involved samples from a minimum of 50, to a maximum of 106 realiza-

tions. Careful extrapolations gave estimates of the fraction of interface steps on W ,

N(εW/T ) = limX→∞n(X). We make explicit only the dependence on εW/T , because this is

for us the parameter driving the wetting transition. In the T = 0 cases, which are relevant

in the presence of bulk disorder, wetting is induced by varying the ratio of εW to some

reference energy, rather than T ; below, to simplify notations, we generally indicate by εW

dimensionless energies.

As εW approaches from above a critical value, εc, we always observe that N becomes

zero, within our accuracy, and stays such for all εW < εc. Of course, εc depends also on ζW

and always increases with increasing ζW , provided other parameters are kept fixed. Thus,

rougher walls have more difficulty in pinning the interface.

The nature of the wetting transition occurring at εc can be revealed by the way in

which N approaches zero. Indeed, with both ordered and random bulks we verified that,

for sufficiently low ζW (ζW <∼ 1/2 and ζW <∼ 2/3, in the ordered and disordered cases,

respectively), N approaches zero as a power of ∆ε = εW − εc, i.e. N ∼ ∆εψ (Fig.2). For

ordered bulk we found ψ = 1.01 ± 0.02 in a rather wide range of roughnesses (ζW <∼ 2/5),

while for random bonds ψ = 2.0 ± 0.1 and ψ = 2.1 ± 0.1 were estimated for ζW = 1/2

and ζW = 0.557, respectively. Such results suggest that, as long as ζW is not too large,

the wetting transitions are continuous and, moreover, remain in the respective flat wall

universality classes. Indeed, with flat wall in 2D, ψ = 1 with ordered bulk [11], and ψ = 2

with bond disorder [4] are both exact results.

In the region of high ζW the plots of N vs. εW show a steep jump to zero at εW = εc

(Fig.2). It is not possible to fit well this approach to zero as a power law. This holds both

with and without bulk disorder: the only difference is in the respective ζW thresholds beyond
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which the new behavior starts. A steep drop is suggestive of a first–order transition. Clear

numerical evidence of this first–order can be obtained by plotting hystograms of n(X), as

obtained in our samples over disorder at different values of X and εW (Fig.3). For values

of ζW below threshold the hystograms always show only a single peak, whose support shifts

gradually to zero as εW approaches εc. This is consistent with a second–order wetting

transition. On the contrary, if ζW is above threshold, the hystograms show a double peak

structure for εW close to εc. One of the peaks is at zero, while the other remains always at

nonzero n. In this case the mechanism by whichN approaches zero is a rapid depletion of the

peak at nonzero n in favor of that at n = 0. This depletion occurs in narrrower and narrower

εW intervals, as X increases. The two–peak structure reveals clearly a discontinuity, which

can only be compatible with first–order wetting.

A sharp determination of the threshold ζW -s for first–order wetting is not easy, numer-

ically. The evidence collected, and considerations made below, indicate ζW = 1/2 and

ζW = 2/3 as the plausible thresholds, in the cases of ordered and bond–disordered bulks,

respectively.

A study of interface depinnings occurring on hierarchical diamond lattices can give some

extra qualitative insight into the transition to first–order wetting. Paths on these lattices

are often used to mimic directed polymers or 2D–interfaces. In the same context one can

study depinning from random rough attractive walls. The results have very high numerical

accuracy and support the changes from continuous to discontinuous wetting at the expected

thresholds [10,12].

3. DISCUSSION AND GENERALIZATIONS

The results illustrated above are limited to 2D Euclidean lattices. In spite of such

limitation, they are quite remarkable and definitely challenge us to gain a better theoretical

understanding of the role of geometrical surface disorder in interfacial phenomena.

With short–range forces, first–order wetting is not expected in 2D, as a rule. Indeed,

so far, discontinuous depinning could only be obtained with special, extreme setups, like an
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attractive defect line in the bulk competing with the (flat) wall [13], or a bulk disorder fully

correlated longitudinally [14]. According to eq.(3), in our models only surface disorder is

longitudinally (power–law) correlated. This physically plausible and more subtle correlation

is sufficient to induce the tricritical phenomenon described above. Here geometric surface

disorder seems also to act somehow opposite to its chemical counterpart. Indeed, chemi-

cal disorder on the wall has been found to turn back continuous the first–order depinning

observed with attractive bulk defect [15].

A qualitative understanding of the thresholds at ζW = 1/2 or 2/3 can be gained by

referring to the concept of entropic, or bulk–disorder induced repulsion [5,6]. A repulsive

potential is experienced by an interface with roughness ζ0, when it is bound at an average

distance y from a substrate. Scaling arguments and, in 2D, a random walk necklage–

like description of the interface, lead to a repulsive wall–interface potential ∝ y−τ (ζ0), with

τ (ζ) = 2(1−ζ)/ζ, at large y [6]. In continuum descriptions based on interface Hamiltonians,

this potential originates from a stiffness term proportional to the gradient squared of the

interfacial profile in the free energy density. With short–range forces the stiffness term is the

longest range contribution to the free energy (or energy, at T = 0) of the bound interface.

Qualitative arguments [16] suggest that the above repulsion potential should persist with

unaltered long y behavior as long as ζW < ζ0. For ζW > ζ0, on the contrary, we expect a

behavior ∝ y−τ (ζW ), because the bound interface must follow the wall geometry at large

distances, and intrinsic fluctuations become irrelevant. In the case of ordered bulk, this

change of repulsion potential has been also derived on the basis of renormalization group

methods when the substrate exerts long–range van der Waals forces with potential V (y) =

u/yσ−1 + v/yσ on the interface [9]. We expect a similar change to occur in more general

situations. Consistently with our numerical results, as long as ζW < ζ0, it is conceivable

that nature and universality class of critical wetting transitions do not change, upon varying

ζW . This, at least, if only short–range substrate forces are acting. Indeed, the long–range

wall repulsion is not altered with respect to the flat case, and there is no reason to expect

drastic changes in the balance of effects determining the transition. When ζW > ζ0, on the
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other hand, a drastic increment of the large-y positive free energy barrier is determined by

roughness (τ (ζW ) < τ (ζ0)). With such a barrier increment, while other conditions remain

essentially unchanged, it is not surprising that the transition to y = ∞, which takes place

through a continuous tunneling in the flat case, becomes discontinuous. Of course, further

work is needed to support this mechanism. Functional renormalization group techniques

seem particularly promising, especially for the case of ordered bulk.

The idea that, as soon as ζW > ζ0, the long–range wall repulsion becomes stronger

turning depinning discontinuous, leads us to conjecture similar changes also in 3D. With an

ordered 3D bulk, ζ0 = 0. This means that entropic repulsion decays exponentially in y [6].

Thus, as soon as ζW > 0, a long–range free energy barrier builds up and first–order wetting

is expected, if no long–range substrate forces are acting. A similar threshold should fall at

ζW = ζ0 ∼ 0.41 with a 3D bond–disordered bulk.

Finally, let us come to the long–range substrate potential V mentioned above. With flat

wall, critical wetting is known to fall into three possible regimes, each one corresponding to a

distinct universality class. For ζ0 < 2/(σ+2), 2/(σ+2) < ζ0 < 2/(σ+1), and ζ0 > 2/(σ+1)

one has, respectively, the mean field (MF), the weak fluctuation (WFL), and the strong

fluctuation (SFL) regimes [5,6]. The exponent σ enters in the asymptotic behavior of V .

Since the regimes with flat wall are determined by the relative importance of the terms

in V and the stiffness repulsion ∝ y−τ (ζ0), in the formulas for ψ and other exponents, ζW

should always replace ζ0, as soon as ζW > ζ0 [9]. Indeed, the stiffness repulsion is controlled

by τ (ζW ), rather than τ (ζ0), at large y. One can then foresee that, e.g., a wall roughness

ζW > ζ0 converts a MF (ζ0 < 2/(σ + 2)) into a WFL, or a SFL regime, depending on which

interval ζW falls into. The case ζ0 > 2/(σ + 1), which already implies SFL regime with flat

wall, is particularly relevant for us. Indeed, in this case ζW > ζ0 implies that the roughness

controlled stiffness repulsion becomes the most long–range contribution to the free energy,

and it is plausible that the associated barrier effect drives the transition first–order [16].

Our results lead to the general conclusion that, as soon as ζW > ζ0, critical wetting

transitions become first–order, no matter whether the intrinsic fluctuations of the interface
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are controlled by temperature or by disorder [17]. In the case of long–range forces the

conclusion is limited to critical wetting in the SFL regime. We expect similar results to hold

also for other types of randomness or inhomogeneity in the bulk. An interesting example

are interfaces in quasi–crystals [18].
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FIGURE CAPTIONS

Fig. 1 Wall delimiting the substrate (shaded region) and interface configuration (1 wall-

interface contact).

Fig. 2 Results for T = 0 with random bonds. For two of the curves ζW < 2/3, for the

others ζW > 2/3. The inset shows a power law fit for ζW = 1/2.

Fig. 3 Hystograms of n(X) for εW >∼ εc and ζW = ln(6)/ ln(8).
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